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A partialy projected wave function for radicals
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A partialy projected wave function for odd electron systems with quantum number
M = 1/2, containing p spin functions « and v spin functions 3, with fractional spin
component S, = 1/2 and 3/2 are derived from the totally projected wave function. To
obtain these wave functions new symmetry relations between Sanibel coefficients for the
odd electron case have been found, as well as the relations between primitive spin functions
and their spin permutations. The wave function for the doublet state is shown not to contain
contamination of the quadruplet state, and the wave function for the quadruplet does not
have contamination of the duplet. Both wave functions exhibit equal forms except in the
signs of their summation terms. The number of primitive spin functions depends on the
number of electrons (ns), it grows linearly as ns = (IV + 3)/2. It can be considered as a
generalization of the half-projected Hartree—Fock wave function to the odd electron case.
The HPHF wave function is defined for even eectron systems and consists of only two
Slater determinants, it has been shown to introduce some correlation effects and it has been
successfully applied to calculate the low-lying excited states of molecules. Therefore, this
investigation is the first step to propose a method to calculate the excited states of radicals
when other methods are impracticable.

1. Introduction

The simple different orbitals for different spins (DODS) single Slater determi-
nant wave functions of the UHF method permit us to take into account a part of the
correlation energy since they give lower energies than the conventiona (restricted)
HF method using doubly filled orbitals. The use of the DODS wave functions has
resulted, however, in the situation that the UHF wave functions fail to belong to a
pure spin state; they are not eigenfunctions of the total spin operators 52, Generdly,
the DODS Slater determinant can be considered as a sum of terms corresponding to
al the multiplicities which are possible for the given number of eectrons and given
M eigenvalue of the resulting S, operator.

L owdin [3] has proposed to select the component which corresponds to the desired
multiplicity and to use the wave function obtained in this way as atrial wave function
in the variational procedure. For this reason Lowdin introduced the spin projection
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operator

~ S2 (1 +1)
95_11}95(5+1)Z(1+1)’ M

which annihilates al the components of any wave function except that component
which has the desired spin multiplicity 25+1. The method consisting of the variational
optimization of a spin-projected single DODS Slater determinant is called extended
Hartree—Fock method (EHF) [3].

Since Lowdin’s work in 1955 many authors have worked in this field using
different approaches and techniques. We shall shortly discuss those works which are
of most importance from the point of view of the present approach.

The EHF equations for the even electron [5,6] and odd electron [4] systems have
been derived by Mayer, from the generalized Brillouin theorem using corresponding
orbitals. Some applications of the EHF method to systems with even number of
electrons, as butadiene, cyclobutadiene, and systems with odd number of eectrons as
benzyl radical, show that the EHF method introduces about 90% of the correlation
energy in the firsts and more than 50% in the latter ones (comparing with what is
known in the literature) [5,6].

In addition, the EHF resulting wave function has a very large overlap with the
Cl one. Therefore, the EHF wave function is very close to the Cl one. By contrary,
the UHF wave function has a much smaller overlap with the CI one, the UHF wave
function may be considered much worse than the RHF one, even that it introduces
some correation in the energy.

More recently, Smeyers has worked out asimple variant of the partial annihilation,
called haf-projected HF (HPHF) [11,14]. The haf-projected Hartree—Fock function
was initially proposed in order to introduce some electronic correlation effects in the
wave function for singlet ground states. In this model, the wave function is written as
alinear combination of only two open-shell (DODS) Slater determinants [12]

1. _ _
WHPHF = E{‘alblazbz . anbn\ + (—1)”+S‘b151b252 . bnﬁn‘ }, (2)

where the second Slater determinant is derived from the first by projection on the even
Spin momentum space.
It can be easily shown that this projector possesses the smple form [11,14]

A($) = [+ (159, €

where n stands for the number of pairs of electrons and ¢ is an operator which permutes
al the a; and b; functions in the same shell.

It can be easily verified, also, that the A(S) isaprojection operator which depends
only on the parity of the spin number S:

AS) = [A(9))%,  AOAQ) =0, (4)
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that ﬁ(O) projects on the spin space even; and 2(1) projects on the spin space
odd.

Thus, the HPHF function is not a pure spin function. But the ground state wave
function for singlet state will not contain triplet component which is usually the largest
contaminant in a DODS function. Furthermore, it may be expected than the quintuplet
contamination will be very small in asinglet ground state because of its higher energy.

The two-determinantal form of the HPHF function, however, suggested its use
for the direct determination of the lowest singlet excited states. In this aim, a procedure
similar to that for the ground state was developed and successfully applied to small
molecular systems [2,9,15]. In these calculations, the HPHF model was shown to yield
much better results than a single excitation Cl calculation [2]. Also, this procedure has
been described and successfully applied to the determination of the optimal geometry
of relatively large systems as cyclobutanone and 3-cyclopenten-1-one, in their first
singlet (n — 7*) excited states [16], to which large CI caculations cannot be applied.

A similar wave function to the HPHF one would be desirable for odd electron
systems. But the HPHF wave function cannot be directly extended to odd number of
electrons because it has been derived from the fully projected wave function for even
electron systems. Therefore, if one wants to write the analogous wave function with
odd number of eectrons, one has to go back to the fully projected one of the EHF
method and to investigate whether there are relations between Sanibel coefficients as
in the even electron case and if there are any relations between primitive spin functions
and those obtained after a given permutation of spin.

2. Derivation of the wave function for odd electron systems

In general, in odd electron systems we have N spin 1/2 particles of which p
have z component up and v = N — i < u have z component down. An eigenfunction
of 52 and S, with eigenvalues S(S + 1) and M, respectively (the latter is satisfied
with (1/2)(x — v) = M > 0), can be obtained by the use of the Lowdin projection
operator Oy on the spin function [a#][3"], the product of the pua's and v3’s leads to
the Lowdin expansion [3]

Ssr[a] (3] = 3 €S, M, m) ot 0) [0t (5)

q=1

where [aP39] is the sum of dl (p;q) possible products of pa spin functions and ¢
spin functions and n = N/2.

The coefficients in the case M = S [7,8], called principal case, yield the expres-
sion

%ww—fﬁﬂ)%)W%%Wﬂ 6)
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The Sanibel coefficients in the principal case can be given as

2S+1) (1
C= (o EER(") @
and
Tq — [a“fqﬂq} [aqﬂl“q]. (8)

The case where M = 0 can be extracted from (6).
For the general case where S > M the Sanibel coefficients have the form [17]
25+1

S—M
_q)a+S-M—k
1+n+Sk:0( ) k

" S+ M n+S \* ©)
S—M-k)\u—q+£k)
We will use the Lowdin projection operators and the Sanibel coefficients in the
next sections.

S—M
Cy(S, M,n) =

2.1. Symmetry relation between the Sanibd coefficients with odd number of electrons

The form of the Sanibel coefficients for the case S = M having an odd number
of electrons as has been shown above is

1 , (25+1
C, = (-1 with Cp = . 10
= Caco) witn co = ELE (10)
Let us subgtitute the index ¢ by 1 — ¢ and we have
Chq = (1)M_q< " >C0; (12)
n—q
dividing expression (11) by expression (10),
-1
Cu—q _ (_1)'u7q (,uliq) (12)
- -1
Cq =17 (1
for al ¢ is then
Cu—q (DH
= , 13
Cq (71)2(1 ( )

by means of the identity between binomia coefficients.

()= a9



M.B. Ruiz / A partially projected wave function for radicals 237
Finaly, we have the symmetry relation
Ciq=EDCy, q=1,2,...,p. (15)

In the same way, for C,_, we find

Cu—q _ (_1 v (Vﬁ(])il _ ( 1)y (q + 1) (16)
= -1 —\TH T
Co DT () p=q
and the symmetry relation'
cyq:(1)v(z+i])cq, ¢=012...,v (17

2.2. Relations among primitive spin functions and their spin permutations in the odd
electron case

Let us define a new permutation operator 1355 of the spin functions, which in-
terchanges simultaneously v functions  for o and therefore v functions « for 5. We
restrict here our study to those cases where = v + 1, i.e., radicals, other cases with
uw— v > 1 will not be considered here. As there is one « function more than 3
functions, there is more than one possibility of interchanging the 8 functions by «,
and the result is the sum of these possibilities. The number of terms of the sum then
is given by (#).

For example, taking a primitive function of 5 electrons,? 13;’5 acts as follows:

ﬁgﬁaaaﬂﬂ = [Bfaca + Bafaa + affaa. (18)

So, the action of the permutation operator on a primitive function yields a sum of
primitive functions, belonging to the set of primitive functions obtained by application
of the Lowdin projection operator, 77, with ¢ = 0,1,2,...,v. Following the case
of 5 electrons, = 3 and v = 2. The totaly projected wave function is a sum of
terms 77, and, therefore, it is a sum of 10 primitive spin functions (permutations with
repetition of 5 functions P> = 5! /(312!) = 10):

To = [a3] [Bz] = aaafpf,

Ty = [o®B] [aB] = aaBap + aaBfa + afaaS + afafa
+ Baaaf + Baafa,

T = [af?] [0?B] = aBfaa + Bafaa + BBaaa.

In the even eectron case the symmetry reation is C,,_, = (—1)"T5C,.
2 Using the following short notation a(1)a(2)3(3) = aapf.

(19)
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Applying the permutation operator ﬁgﬁ on every primitive function and collecting
terms, we have in this example

PYyTy="Ty,

~

PYyTy = 2T + 2T, (20)

~

ngTz =315+ T1.

This result looks apparently arbitrary but investigating the action of 13;;[3 on
To(v), T1(v), To(v), T3(v), Ta(v), T5(v), . . . , T,,(v), v being a given number of 3 elec-
trons, one finds general expressions

PesTo(v) = T(v),

PLTa() =vT,(v) + 2T, a(v),

PYyTo(v) = (v — VT,—1(v) + 3T, —2(v),

PLyTa(v) = (v — DT, o(v) + 4T, 3(v), o
PLsTa(v) = (v — 3)T,—3(v) + 5T,—a(v),

PYTs(v) = (v — AT, _a(v) + 6T,_s(v),

PsT,(v) = Ta(v) + vTo(v).

Now let us multiply from the left and the right side, respectively, al equations
by their corresponding Sanibel coefficients Cy, C1,...,C,:

CoPsTo(v) = CoT(v),

Clﬁa”ng(V) =vCT,(v) + 2C1T,-1(v),
CoPYTo(v) = (v — DCoT,-a(v) + 3C2T, (),
CslfgﬁTs(V) = (v — 2)C3T, 2(v) + 4C3T, 3(v), 2
CaPysTa(v) = (v — 3)C4T,—3(v) + 5C4T, —a(v),

CsPYTs(v) = (v — A)CsT,—4(v) + 6C5T,_s(v),

CvﬁggTu(V) =C,Ti(v) + vC, To(v).
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Performing the sum of all equations, we get a general expression®
S CPLT =Y (n—v+Q)CTu—g+ Y (1 — 0)CqTyuq- (23)
q=0 q=0 q=1

This genera formula will be used to prove that the Lowdin projection operator
for the case S = M (M = 1/2) acting on a function defined for S = 3/2 is zero, and,
therefore, the function does not contain any spin contamination of a state S = 1/2
which is the next state in energy, and usua contamination in odd electron systems (see
branching diagram [7]).

3.  The partially projected wave function

We have investigated the symmetry relations between Sanibel coefficients and
primitive spin functions and we have obtained the results shown in section 2. In this
way we have found two wave functions that fullfil our requirements of spin, i.e., they
do not contain any contamination of the energetically nearest state of spin. It would
be desirable to show the derivation of such wave functions from the fully projected
one, but until now no demonstration has been carried out. Nevertheless, we would like
to investigate this aspect of the theory in further works. For this reason we propose
the two wave functions as an ansatz, and we write a the moment only the spin
part.

For duplet states, S = 1/2 (including normalization constant),

1
VAT R

where 13(;’ is defined in section 1 as the permutation operator which interchanges v
functions ( for v functions oz simultaneously. This operator yields a sum, and v is the
number of 3 electrons. Ty is the primitive function which is a product of . functions
« and v functions 3, in this order. So, considering the spin part, Ty is the reference
wave function.

For quadruplet states, S = 3/2 (including normalization constant),

W=

[2+ (~1)"P%,) To, (24)

1 7 i5Y% .

W= 1 +_,U [1 +(-1) aﬁ] To; (25)
one may redlize that the sign now depends on i and the constant of the first term,
which is always 2 for duplets, is now always 1 for quadruplets.

Asfor agiven system p = v+ 1 both wave functions have a different sign in the
second part, and, of course, both wave functions are formed with the same primitive
spin functions (see table 1).

3 This result cannot be expressed in an easier way because the indices must be such that there does not
appear aterm T, which is not defined, i.e., T),. In the even electron case thisis PogTy = Trn—q.
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Table 1
Signs of the second part of the partially projected wave functions for
S =1/2 and S = 3/2 depending on the number of eectrons, N (u
is the number of « spin functions and v the number of 5 ones).

N 1 v (-D)” inW(S=1/2 D" inW(S =3/2)
3 2 1 — +
5 3 2 + _
7 4 3 - +
9 5 4 + -
11 6 5 - +

Let us investigate some examples, e.g., until 7 electrons. In the 3 electron case,
the partialy projected wave functions coincide with the exact eigenfunctions

WY(S = 1/2) =2aaf — (Baa + afa),

(26)
WY(S = 3/2) = aaf + (Baa + afa).
With 5 electrons,
W(S = 1/2) = 2aaafp + (BBaca + fafaa + affan), o7
WY(S = 3/2) = aaaff — (Bfaca + Bafaa + affaq). @)
Finaly, in the 7 electron case,
WY(S = 1/2) = 2aaaaffB — (BBaaaa + BRafaca
+ Baffaca + affBaaq), 28)
W(S = 3/2) = aaaaflS + (BFLacaa + BRafaca
+ Baffaca + afBBaaq),

al of them written out without normalization constants. The number of terms in the
wave function grows with the number of electrons but very slowly.

Both wave functions can be written in a compact form, with S and N in the
exponent and in the coefficient:

(7 1)N/2_S DU .
e @)

this wave function is not valid for S = 5/2.

W(S,N) =To+

3.1. Demonstration: the partially projected wave function for the states S = 3/2
does not contain contamination of S =1/2

Let us take the example N = 5 and let us see how the primitive spin functions
cancel due to the coefficients. The Sanibel coefficients for the projector of the state
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S=1/2aeCy=1/2, C; = —-1/6 and Cy = 1/6. Tp, T1 and T, are defined in
equation (19). R

Let us apply the projector Oss(S = 1/2) on the wave function for the quadruplet
state (27):

Os5(S = 1/2W(S = 3/2). (30)

One has here to apply the projector on every primitive spin function. When the
primitive spin function is different than Ty one may realize that the Lowdin projection
operator commutes with any arbitrary permutation of the spin functions, Pij:“

Osn Pij = PijOss. (31)

The Lowdin projection operator is linear, therefore it acts separately on every
function

égs{aaaﬁﬂ — (BBaca + Bafac + aﬁﬂaa)} (32
and yields the sum
~ 1 1 1 1 1
OgssW = Eaaaﬁﬁ — éaaﬁaﬂ — éaaﬁﬂa — éaﬁaaﬂ — éanaﬁa
1 1 1 1 1
— éﬁaaaﬂ — éﬁaaﬁa + éaﬁﬁaa + éﬁaﬁaa + éﬁﬁaaa

— }Bﬁaaa + }aﬁﬁaa + }ﬁaﬁaa + }aﬁaaﬁ + }ﬁaaaﬂ

2 6 6 6 6
1 1 1 1 1
+ (—Saﬂaﬁa + (—Sﬁaaﬂa — éaaﬂaﬂ — éaaﬂﬂa — éaaaﬂﬂ
— %ﬂaﬂaa + %aaﬂaﬂ + %ﬁaaaﬂ + %aﬁﬂaa + %ﬂﬂaaa
+ %aaﬂﬁa + %ﬁaaﬂa — %aﬁaaﬂ — %aaaﬂﬂ — %aﬂaﬁa
— %aﬁﬁaa + %aaﬁaﬁ + %aﬁaaﬁ + %aaﬁﬁa + %aﬁaﬂa
+ %Baﬁaa + %ﬁﬁaaa — %aaaﬁﬁ — %ﬁaaaﬁ — %ﬁaaﬂa
=0. (33

The result of the projection equa to zero means that the wave function has no
component of spin S = 1/2 or, what is the same, it has no contamination of this
state of spin. Since in the branching diagram one can see that with odd number of
electrons the possible states of spin are al fractional numbers S = 1/2,3/2,5/2,...,
the fact that the next state in energy is not present in the wave function, makes the
wave function amost pure of spin contaminations. Other states as 5/2, which may

4 For example, ﬁz5aaaﬂﬁ = afafa. With several spin permutations one can express any primitive
spin function, belonging to the set of a projected wave function, in terms of the spin function aaa/34.
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be present, are expected to be very high in energy, a least with a few number of
electrons.®

We have projected with N = 7, N = 9 and so on, and we have found the same
result equal to zero. Therefore, a general demonstration is necessary.

The wave function for a N-electron system (odd) for a state S = 3/2 has been
defined as

W =Ty + (— 1" P To. (34)

The Lowdin projection operator for the principal case yields a sum from every
term of the wave function. Taking into account that the permutation spin operator
commutes with the projection operator, one has

OssW =Y CyTy+ (-D!PY Y CyT, (35)
q=0 q=0

The permutation operator is linear and can act on every term of the sum
> O, + ()M CuPYT,. (36)
q=0 q=0

As we have derived the action of such a permutation operator on an arbitrary
sum of terms 7, but better, the sum of this actions in equation (23)°

Y CT+ (D)"Y {(—QC Ty + (= v+ q)CoTyg }- (37)
q=0 q=0

The summation of the second term remains equal if we change the indices in the
following way:

Z CyTy + (-~ Z {qc,uquq +(u— Q)CV*QT(]}’ (39)

q=0 q=0

using the relation of symmetry of the Sanibel coefficients in the odd electron case,
deduced in section 2.1:

14

ST+ ()Y {q(_l)uchq S
q=0

q=0

(¢+1)
pw—q

(—1)“CqTq}- (39)

5For example, in the case N = 5, the branching diagram shows the degeneracy of the spin states,
5 duplets, 4 quadruplets and one sextuplet. This last one in a given spin configuration with M = 1/2
must be very high in energy, therefore the spin contamination is very small in the total wave function
for the ground state.

61t was necessary to multiply already with the Sanibel coefficients because the first terms 7o has only
one term and not two as the others.
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Collecting terms we have

S TCT A+ D)+ CoTy{a-1" + (=1 + (-1} (40)

q=0 q=0

Finaly, smplifying,

iiaﬂ31+(fnwfnf}:o,,k+u:AnAHsmm; (41)
q=0

N is the number of electrons defined as odd. We have demonstrated that
Oss(S = 1/2W(S = 3/2) = 0. (42)

3.2. Demonstration: the partially projected wave function for the states S = 1/2
does not contain contamination of S = 3/2

Asin section 3.1, we have atrial wave function for S = 1/2, for example, with
N =5 and we are going to show that it has no component of S = 3/2. Let us apply
the projector ©¢s(S = 3/2) on the wave function for the duplet state (27):

éSM{Zaozozﬂﬂ + (B0aca + Bafaa + aﬂﬂaa)} (43)

with S = 3/2 and M = 1/2, leading as a result a sum with equal terms but different
coefficients. The Sanibel coefficients for the projector of the state S = 3/2 (9) are
Co = 2/5, Cl = 1/15 and Cz = —4/15:

~ 4 2 2 2 2
w==_ i Sl Bl il
Osu 504040455 + 15aaﬁaﬁ + 15aaﬁﬁa + 15aﬁaaﬁ + 15aﬁaﬁa

2 2 8 8 8
+ 1—560404045 + 1—560404504 — 1—5aﬁﬁaa — Eﬁaﬁaa — Eﬁﬁaaa

2 1 1 1 1

+ gﬁﬁaaa + 1—5aﬁﬁaa + 1—560450404 + 1—504604046 + 1—550404046
1 1 4 4 4

+ 1—5aﬁo¢ﬂo¢ + 1—5ﬂo¢aﬂo¢ — 1—5aaﬂo¢ﬁ — 1—5aaﬂﬂo¢ — 1—5aaaﬂﬁ
2 1 1 1 1

+ gﬁaﬂaa + Eaaﬂaﬂ + 1—5ﬁozozozﬁ + Eaﬁﬂaa + Eﬂﬂaaa

1 1 4 4 4
+ Eaaﬂﬂa + Eﬂaaﬂa — Eaﬂaaﬁ — Eaaaﬂﬁ — Eaﬁaﬂa
1

2 1 1 1
+ gaﬁﬁaa + 1—5aaﬁaﬁ + 1—504604046 + 1504045604 + Eaﬁaﬂa

1 1 4 4 4
+ 1—560450404 + 1—565040404 — 1—5aaaﬁﬂ — Eﬂaaaﬂ — Eﬁaaﬁa
-0 (44)
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The consequences of this result are analogous to section 3.1. We have projected
with N =7, N = 9 and so on, and we have found the same result equal to zero.

For the case S = 3/2 and M = 1/2, the equation of the Sanibel coefficients
takes a simpler form,

1

e B F (L))

since for thiscase n + 1 = 1 + 1. We expand the summation and we put out of the
sum the sign:

25 +1 p4+1 \ 7t M+1>1
C, = —1)¢ -2 . 46
" Trnts ){<uq+1> (uq 0
Now let us calculate the binomia coefficients and perform the sum. A binomial

coefficient can till be extracted and we get a simpler form of the coefficients for the
particular case treated here:’

25+1 1k = 3g—1/u -1
— =012...,v 4
C(] 1+n+5( ) M+1 q H q y 4y &y 1V (7)

Using this formula to obtain C,,_, and C,_, in asimilar way as in section 2.1,
one has
2u—1

mc q:O,l,Z,...,V, (48)

Chuq= (2"
Be—2v)(¢+1)
(n—3¢—1)(n—1q)
the symmetry relation of the Sanibel coefficients. They look now more complicated.

Using them we perform a demonstration correspondingly as in section 3.1.
The wave function for odd electron systems for a state S = 1/2 has been defined

Coq=(=1)" Cyp ¢=01,2,...,v, (49)

as
W =270 + (- 1) FisTo. (50)
The projection of the wave function on the space S = 3/2 yields

OsuW =Y CoTy+ (-1 > CyPYT,. (51)
q=0 q=0

"The factor (25 +1)/(1+n + S) in the coefficients is different from Co, as in other cases of the Sanibel
coefficients.
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Since we know how the spin permutation operator acts on 17, (23),

S CTy+ (0D {w—C T g+ (u— v+ )CyTyg}- (52)

q=0 q=0
The summation of the second term remains equal if we change the indices in the
following way:

v

> CTy+ (1> {aCu—oTy + (1 — )Cog Ty} (53)
q=0 q=0

Using the relation of symmetry of the Sanibel coefficients in the odd electron case,
deduced in this section,

Y z 3g—2u—1
S et 3 {acy i =2 2,
= = 1 —3q
(B —2)(qg +1)

p—3q¢—1)(n—q)
reorganizing the expression and remembering that 4 = v + 1 we have

), (—1)”CqTq}: (54)

> CiTy[2+2(-)"(-1)"] =0, p+v=N, N isodd; (55)
q=0

N is the number of electrons defined as odd. We have demonstrated that

Osa(S = 3/2W(S = 1/2) = 0. (56)

4, General form of the partially projected wave function

Asit is known, one can write the wave function as a product of spatial and spin
part, with a spatial part as a Slater determinant:

W = App. (57)

The Lowdin projection operator commutes with the antisymetrization operator
and with the spatial wave function, and in addition, with any permutation of the spin
functions 13” Therefore, the spin projector acts on the spin function consisting of 1
functions « followed of v functions g, i.e., Tp.

In the partially projected wave function we have then as many Slater determinants
as primitive functions it contain:

Osm ¥ = ApP;;051,To. (58)
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Using the usua notation of a; spatia orbitals for the « orbitals and b; for the g
ones, and ordering them asis usua in DODS determinants, we see the correspondence
aaaff — arbrazboaz. (59)

For example, in the case of 5 electrons the wave function looks

- - 1
W = |agbrazboas| + §{|51515252a3| + |a1brabyas| + |aabiazboas|}.  (60)

We shall emphasize that the first Slater determinant is the reference one, and the
determinants of the second part are Slater determinants where the « and 3 functions are
interchanged, remaining one orbital a; as « and this orbital is occupaying all possible
positions (there are so many Slater determinants as positions for the « orbitals inside
of the a; set). In general, the wave function is

- - - 1
Y= ‘alblazbz - aybyau‘ + E{‘61b162 .. .Eyb,/auf + ‘Elblﬁz .. .Ey_lby_laybyﬁu‘

+ |a1ba@s . . . ay—1by_1@byay| + - - + laabi@z . .. @by a,| ) (61)
One can, finaly redefine the permutation operator 1355 as the operator which
interchanges the « and 3 functions in the Slater determinant. The wave function
consists then of one Slater determinant which is the reference one and a sum of Slater
determinants which result from interchanging the spin functions in a shell and the odd

electron, always o can occupy every shell not only the last one:

~1)Y =,
Y(s = 1/2) =Do+ %PaﬁDO’

W(S = 3/2) = Do + (—1)* P43 Do. (62)

5. Computational aspects

The partially projected wave function given in (62) is built up with two sets of
orbitas a;, i = 1,2,...,v + 1, and b;, j = 1,2,...,v, which minimize the total
energy. The orbitals of each set can be considered orthogonal among themselves since
they are the eigenvectors of two symmetric Fock matrices:

(ailaj) = 6i, 4,7 =21,2,...,v+1,
(bilbj) = 65, 4,7 =121,2,...,v.

Also, it is possible to perform two separate unitary transformations, so that the
orbitals belonging to different shells are orthogonal. Such orbitals are known as cor-
responding orbitals [1]:

<ai]bj>:)\i5,~j, ’i=1,2,...,V—i—1,j=1,2,...,1/. (64)

(63)

One may realize here that the overlap matrix S has rectangular form, and that
overlaps of the form (b;|a,11) are zero by means of the corresponding orbitals.
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In order to do this, Amos and Hall [1] proved that arectangular matrix S of order
v x pu (v < ) having arank v can be diagonalized by means of two unitary matrices®

utsv =T. (65)

One subjects the orbitals b; and a; to the unitary transformations U and V. The
Hermitian matrix S*S can be diagonalized by the unitary matrix V of order p x uu. The
unitary matrix U of order v x v is obtained from the linearly independent eigenvectors
of SV.

If the above orthogonality conditions are fulfill, the Brillouin theorem aso holds:®

oOF

a<€it
where W;, is the partialy projected wave function in which an a; occupied orbital has
been replaced for an a; virtua one.

Introducing the wave function expression (62) into (66), the equations of the
method can be obtained. Then it is necessary to evaluate the matrix elements according
to the Slater—Condon rules [10]. From the equation of the method, a general Fock
operator for determining the a; orbitals of ground states of odd systems can be extracted
and another one for the b; orbitals. At this point one has 1) to develop an additional
Fock operator for the non-paired eectron [5,6], or 2) to find a common Fock operator,
adding the Fock operators obtained for paired and non-paired electrons multiplied by
the appropriate density matrices, as in the case of HPHF for excited states.

The procedure may be carried out by diagonalizing the H2 and HP matrices
dternatively as in the UHF procedure up to convergence.

In the calculation of the total energy, it is convenient to express this energy
in parts, since the first matrix element corresponds to the UHF energy for the odd
system, and the last ones can be considered as the correlation energy that introduces
this partially projected wave function because it describe the delocalization of the
non-paired electron.
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